THE ROLE OF LIFI FOR 6G IN BUILDINGS

Volker Jungnickel

Make Your Light Smarter – Turn It Into Data

Acknowledgement

Thank you to

- Dominic Schulz
- Kai Lennert Bober
- Malte Hinrichs
- Sepideh Kouhini
- Sreelal Maravanchery
- Jonathan Schostak
- Peter Hellwig
- **Giulio Boniello**
- Julian Hohmann
- Jonas Hilt
- Anagnostis Paraskevopoulos
- **Ronald Freund**

© Fraunhofer HHI | 02.09.2021 | 2

and all our partners in industry and funded projects

AIRBORNE AIRBORNE

Content

The Role of LiFi for 6G in Buildings

- What is LiFi?
- Technology
 - Frontends, Channel, Modulation, MIMO
 - Integrated Positioning, Integration with Wi-Fi and 5G
- Use cases
 - Indoor: Residential. Medical, Industrial
- Standards
 - G.9991, IEEE P802.15.13, IEEE P802.11bb
- 6G in Buildings
 - Techno-economics of small cells
 - Heterogeneous system concept: FTTH, FTTR, Wi-Fi 7/8, LiFi
- Summary

What is LiFi?

Key Facts

- Wireless communication using light
- Mobile, bidirectional, high-speed data
- No RF needed, unique light properties

© Fraunhofer HHI | 02.09.2021 | 4

Unique Selling Points

- Dense deployment (100 Mbit/s/m²)
- Light does not pass through walls
- No interference with radio
- Unregulated optical spectrum

Use Cases

- Indoor:
 - Industry, hospitals, residential
- Outdoor:
 - Fixed wireless access, vehicle-tovehicle communications

Transmitter

Visible vs. infrared LED

Wavelength (nm)

Blue LED + phosphor

- Blue LED is fast (~20 MHz)
- Phosphor is slow (~2 MHz)
- Low-cost, simple driving

R+G+B type

- wavelength-div. multiplex
- ~15 MHz per LED chip
- Higher cost

Lessons learned

- use infrared (800 nm to1000 nm) instead of visible light
- higher efficiencies of LED and photdetectors, avoid wavelength conversion

Laser vs. LED

Role of stimulated emission

- Absorption
 - electron to 1st excited state
- Spontaneous emission
 - excited electron back to ground state → radiative recombination

absorption

×

= 3 P

atom

Upper level

E.

Photon

Lower level

- Auger recombination
 - first electron to ground state, second into 2nd excited state
 - no photon (non-radiative) → less energy-efficient, non-linear
- Stimulated emission
 - external photon forces excited electron into ground state
 - second radiative process \rightarrow faster, more energy-efficient, more linear
- Laser = light amplification by stimulated emission of radiation
 - vertical-cavity surface emitting laser (VCSEL) arrays exist for LIDAR
 - VCSEL arrays act like LED but are more efficient and faster

Auger Stimulated emission Spontaneous emission recombination E₂ Photon **E**₂ Condom direction LED Laser 0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 Frequency in GHz 3 few mW 4 W 3 W 2 W 538 770 281 2016

Fraunhofer

HHL

Drivers Bias versus Switched-mode

OWC waveforms are non-negative

- Bias: around which spectrally efficient modulation can-be applied (e.g. DC-OFDM)
- Switched-mode: operate driver in energy efficient "OFF" and "ON" modes (OOK)
- Enables power saving, e.g. in battery-driven mobile devices, equalization is required

- wide aperture \rightarrow use optical concentrator
- parasitic capacitance can be reduced using boostrap design \rightarrow higher BW
- photodiode can have 10 dB higher sensitivity using transimpedance amplifier
- APD gain versus photodiode can be small

Deployment scenarios

© Fraunhofer HHI | 02.09.2021 | 9

Fraunhofer

Channel model

BS: base station, MS: mobile station

3D environment capture using LIDAR Reduce the effort for defining objects

- LIDAR Scanner: Leica RTC360 (wavelength: 1550 nm)
- Scanned at multiple locations in the room

Sreelal M. Mana *et al.*, "LIDAR-Assisted Channel Modelling for LiFi," 2022 Optical Fiber Communications Conference and Exhibition (OFC), 2022

Output data of LIDAR: (x,y,z) coordinate, surface normal, and reflectance parameter of each detected point

First scanning location

Second scanning location

Final point cloud data of the room

Channel modelling

Simplify the generation of MIMO channels for LiFi

- Channel modelling in frequency domain rather than in time domain
- Channel model = LOS + NLOS
- **LOS:** Based on orientation, distance and optical parameters of Tx
 - $\blacksquare \quad H_{LOS}(f) = V_{Tx,Rx} \cdot L_{Tx,Rx} \cdot e^{-j2\pi f \tau_{Tx,Rx}}$

 $L_{Tx,Rx}$ is the transfer coefficient between Tx and Rx

 $\tau_{Tx,Rx}$ is the delay time

 $V_{Tx,Rx}$ is the visibility factor : (estimated using hidden point removal algorithm)

NLOS channel model

- First 1-3 reflections, $H_{diff}(f) \rightarrow$ Frequency domain model
- Higher order reflections, $H_{diff_{high}}(f) \rightarrow$ Integrating sphere model

© Fraunhofer HHI | 02.09.2021 | 12

Sreelal M. Mana et al. "An Efficient Multi-Link Channel Model for LiFi," *IEEE PIMRC*, 2021

Validation of models by measurements

Experimental setup

© Fraunhofer HHI | 02.09.2021 | 13

Fraunhofer

Results SISO scenario

Results Distributed MIMO setup

© Fraunhofer HHI | 02.09.2021 | 15

Fraunhofer

Results

Achievable rate from measured and modeled channels

© Fraunhofer HHI | 02.09.2021 | 16

Fraunhofer

Modulation

OFDM for high spectral efficiency

- Cyclic prefix overcomes inter-symbol interference
- Circulant matrix gets orthogonal using IFFT/FFT
- Parallel transmission over orthogonal sub-carriers
- Adaptive bitloading to realize channel capacity

D. Falconer et al., "Frequency domain equalization for single-carrier broadband wireless systems," in *IEEE Communications Magazine*, vol. 40, no. 4, pp. 58-66, April 2002

Why power-efficient waveforms?

- OFDM and adaptive Bitloading
 - overcome limited bandwidth of LED
- Industrial IoT, manufacturing
 - Robust communications
 - LOS gets occasionally blocked
 - Visibility to at least two access points
 - Needs wide, overlapping beams
- Energy efficiency is essential
 - rethink modulation for LiFi
 - cf. battery-driven mobile devices

Modulation

OOK/FDE for power efficiency

- OFDM chain can be modified
- Single-carrier (SC) with frequencydomain equalization (FDE)
- Shift IFFT from the TX to the RX
- Works for On-Off-Keying (OOK)

Rate adaptation for OOK

Mobile scenarios have variable SNR

- Multi-level would need linear TX frontends (Pulse-Amplitude Modulation, PAM)
- Variable baud rate works with low-power optical frontends
- MAC layer to adapt the baud rate according to the channel

D. Falconer, et al., "Frequency domain equalization for single-carrier broadband wireless systems," in *IEEE Communications Magazine*, vol. 40, no. 4, pp. 58-66, April 2002

	Octet 1, LSB left							
Bit in the bitmap:	0	1	2	3	4	5	6	7
Clock rate:	12.5 MHz	25 MHz	50 MHz	100 MHz	200 MHz	reserved	reserved	reserved

Figure 49 Clock rate bitmap

IEEE P802.15.13 Draft D6.0, Clause 7.6.19 PM-PHY MCS element

IEEE 802.15.13 PM-PHY

Overcome sloping roofs

Combination of OOK with line-coding implies high overhead: alternatives

M. Hinrichs et al., "Efficient Line Coding for Low-Power Optical Wireless Communications," 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall), 2021

Large effect of FDE: line coding is no longer needed

M. Hinrichs et al., "Efficient Line Coding for Low-Power Optical Wireless Communications," 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall), 2021

© Fraunhofer HHI | 02.09.2021 | 21

Fraunhofer

Distributed MIMO

Mobility support

- Hard handover
 - user is covered just by one access point (AP)
 - disconnect from one AP, reconnect to AP
 - processed in higher layers, complex, error-prone
 - latency is compromised
- Soft handover
 - devices are covered by multiple opt. frontends (OFEs)
 - OFEs are connected to coordinator via fronthaul
 - dynamic selection of OFEs serving the device
 - processed in PHY and lower MAC layer \rightarrow <u>low latency</u>
- Reuse of ideas from Cloud-RAN

© Fraunhofer HHI | 02.09.2021 | 22

Source: IEEE P802.15.13 draft D2

V. Jungnickel, "LiFi for Industrial Wireless Applications" OFC 2020, San Diego, paper M3I.1 - Invited

K.L. Bober, Masterthesis, TU Berlin 2018 also in: V. Jungnickel et al., GLC 2019

© Fraunhofer HHI | 02.09.2021 | 23

Fraunhofer ا

Soft handover removes blind spots

K.L. Bober, Masterthesis, TU Berlin 2018 also in: V. Jungnickel et al., GLC 2019

© Fraunhofer HHI | 02.09.2021 | 24

HHI

Distributed MIMO

SDMA concept

- MUs are served by multiple DUs (clusters)
 - enhanced robustness against blockage
- Clusters use space-division multiple access (SDMA)
 - optical modulation spectrum is reused in space
- Overlapping clusters are separated by
 - TDMA / OFDMA, depending on the standard
 - joint transmission / detection (MIMO) betw. clusters
- Elementary feedback-and-control loops
 - defined in new IEEE P802.15.13
 - supported by beacon-enabled MAC and 2 PHYs

K.L. Bober *et al.*, "Distributed Multiuser MIMO for LiFi in Industrial Wireless Applications" (invited paper), IEEE Journal of Lightwave Technology, March 2021.

Application: Industrial LiFi Distributed MIMO

K.L. Bober *et al.*, "Distributed Multiuser MIMO for LiFi in Industrial Wireless Applications" (invited paper), IEEE Journal of Lightwave Technology, March 2021.

- Grid of distributed optical frontends with centralized control
- Central unit (CU), fronthaul (F), distributed units (DU)
- Overlapping coverage areas, parallel transmissions to multiple mobile units (MU)

D-MIMO Tests Initial Setup at HHI

- Two LiFi cells with access points (APs) and one central unit
- Each LiFi cell with four optical frontends and one equal gain combiner
- Mobile unit can move freely inside LiFi cell
- Measurement of data rate

Measured Data Rates

Downlink and uplink

- LiFi cell is able to cover an area of ~ 20 m²
- Gross date rates up to 380 Mbit/s downlink, 280 Mbit/s uplink

Positioning integrated with communications Time-of-flight measurement

- Hot topic in RF community
- GPS is not available in buildings
- Indoor positioning can be integrated with wireless communication for future IoT
- Wi-Fi suffers from multipath and penetration through walls
- LiFi travels via LOS and remains in same room
- Good candidate for indoor localization

S. M. Kouhini, et al. "LiFi based Positioning for Indoor Scenarios," *17th ISWCS*, 2021

Measurement Setup Positioning in a Conference Room

LiFi for Smart Buildings Mobile Communication by Light

- Use cases
 - Conference Room / Classroom
 - Smart Home / Smart Lighting
 - Smart Hospital
- Current work
 - Pilot installations in class rooms
 - Channel measurements in surgery room
 - LiFi enabled medical devices

Pilot Installation in Class Room

Valuable Feedback from Users

- Installation in a classroom
 - LiFi in Hegel Gymnasium Stuttgart
 - One AP serves multiple users
 - Seamless mobility through simplified MIMO
- Valuable user feedback
 - Application-driven technology development
 - One users does not need 200 Gbit/s
- Required features
 - <100 Mbit/s per user, full coverage, seamless mobility</p>
 - Enhanced usability, low-power for integration into mobile devices

Residential LiFi

Further Development

- Next gen. LiFi installation a classroom March 2021
 - Main-Kinzig-Kreis, Hessen, Germany
- Central unit to connect up to 8 LiFi access points
- Seamless mobility, further reduced cost

LiFi Installation in Hessen

Networked small cells using LiFi

Measurements in a Surgery Room MIMO for Robustness and High Data Rates

- Neurosurgery scenario, University Hospital Prague
 - Tx and Rx at several positions
 - Evaluate the performance
- D-MIMO architecture
 - multiple-input multiple-output (MIMO)
 - coordinator, fronthaul, opical frontends
 - joint processing for all mobile users
- Promising results
 - time-division multiplex is baseline
 - double throughput using D-MIMO (~600 Mbit/s)

© Fraunhofer HHI | 02.09.2021 | 36

Sreelal M. Mana, "LiFi Experiments in a Hospital," in *OFC 2020*, OSA paper M3I.2.

Results in the Hospital

Multiuser MIMO Throughput

- SINR is calculated for each Rx
- Throughput of each individual Rx and total system is calculated
- Various D-MIMO approaches were investigated
- SDMA is the most efficient approach

Sreelal M. Mana, "LiFi Experiments in a Hospital," in *OFC 2020*, OSA paper M3I.2.

LiFi for Industrial Applications Integration of LiFi and 5G

- LiFi-enhanced 5G
 - Use LiFi next to 5G
 - 5G for coverage
 - LiFi for capacity in hot spots
- Vertical handover
 - LiFi attached to 5G core
 - non-3GPP interworking function (N3IWF)
 - 5G core supports LiFi like 5G
- Demo is in progress in EU-funded project ELIoT

Industrial requirements are tough

Cable-like but wireless

Security

- propagation is confined inside the room/light beam
- LiFi is naturally <u>robust against jamming and EMI</u>

Mobility

- wide-beams, 5-6 m high, 100 Mbit/s, eye-safe \rightarrow <u>low power</u>
- artificial intelligence needs integrated positioning

Robustness

- overcome LOS blockages, many devices \rightarrow <u>distributed MIMO</u>
- from diversity (passive combiner) to spatial multiplexing (DSP)

Low-latency

- **TSN** support, low jitter \rightarrow <u>deterministic medium access</u>
- hot spots covered by D-MIMO islands \rightarrow fast handover to RF

LiFi APs

Combiners

Initial proof-of-concept

BMW robotics lab (OWICELLS project, 2015-2018)

In: 1:10 Out: 2:00

<u>https://www.youtube.com/watch?v=066jgai1Fbc</u>

P.W. Berenguer et al. IEEE JSAC 36 (1), 185-193, 2017

P.W. Berenguer et al., IPC 2017; P.W. Berenguer et al., ECOC 2018, P.W. Berenguer et al., GLC 2019

P. W. Berenguer et al., JLT, 37 (6), 1638-1646, 2019

Standards development for LiFi

V. Jungnickel *et al.*, "A European view on the next generation optical wireless communication standard," *IEEE CSCN*, 2015, pp. 106-111

IEEE 802.15.7-2011/2018

- leverage the beauty of visible light for wireless communication
- sophisticated MAC was borrowed from ZigBee, hardly implementable, no market

ITU-T G.9991-2019

- legacy of fixed home networking (powerline, coax, twisted pair, POF)
- very powerful and flexible OFDM PHY, multiple users, limited mobility support

IEEE P802.15.13

- reduce complexity for industrial applications, handle LiFi like in mobile comms.
- 3 PHYs (low-power, moderate and high rate), 2 MAC modes: Polling, D-MIMO

IEEE P802.11bb

- Define new PHY and integrate it into 802.11 MAC → mobility support from Wi-Fi
- Pave the way into the mass market, reduce costs and power consumption

IEEE 802.15.13

Scope

- Multiple Gbit/s
- adaptation to time varying mobile channels
- maintain connectivity while moving

Industrial applications

- control of mobile robots in manufacturing cells and on assembly lines
- automated guided vehicle systems, small-cell backhaul
- secure communications in hospitals, nuclear facilities, etc.

Physical layer

1. Pulsed Modulation (PM) PHY

- OOK/FDE: power-efficient
- 12.5...200 MHz bandwidth,
- low spectral efficiency, 1 bps/Hz, 100 Mbit/s

2. Low-bandwidth (LB) PHY

- 5...20 MHz bandwidth
- moderate spectral efficiency
- 5 bps/Hz: <100 Mbit/s

3. High-bandwidth (HB) PHY

- DC-OFDM, spectrally efficient
- 25 ...200 MHz bandwidth
- high spectral efficiency: multiple Gbps

MAC layer

- Ceiling-mounted "coordinators"
 - coordinator assists all transmissions of devices

Star topology

- special cases:
 - P2P (coordinator with a single device)
 - Broadcast (downlink only)
 - Coordinated topology (master coordinator: classical handover)

MAC modes

- high speed in professional applications
- polling-based mode for office/home
- deterministic TDMA for industrial applications
- support for relaying

Distributed MIMO support

Multiple LiFi access points

small cells \rightarrow too many handovers \rightarrow latency, reliability, overhead are compromised

Horizontal handover

between coordinators: fair between adjacent rooms

New: Distributed MIMO

- between access points in the same room
- one coordinator controls multiple optical frontends
- pilots for MIMO sounding and adaptive transmission
- Supported by the PHY waveform
- MAC frames + procedures for feedback and control

Draft evolution

- March 2017: started
 - Legacy of 802.15.7
- 2017: Proposals, mergers, technical discussion
 - ideas for distributed MIMO to replace classical handover
- 2018: Spring Cleaning
 - remove old 15.7 text, reintroduce what people understood
- 2019: Minimalistic design
 - initial draft with 150 pages
- 2020: IEEE 802.15 WG letter ballot D1.0-D3.0: 815 comments (350 technical, 475 editorial) resolved
- since 2021: IEEE SA ballot

D4.0: 95% approve, 3 NO, 314 comments (9 G, 112 T, 193 E)

D5.0: 98% approve, 1 NO, 158 comments (1 G, 96 T, 61 E)

D6.0: 97% approve, 2 NO, 94 comments (0G, 45 T, 49 E)

publication expected in 2022

- 1 P802.15.13™/D6.0
- 2 Draft Standard for Multi-Gigabit per
- 3 Second Optical Wireless
- 4 Communications (OWC), with Ranges
- s up to 200 Meters, for both Stationary
- 6 and Mobile Devices

Implementation

Realtime LiFi system development

- **Goal:** Scalable distributed MIMO for LiFi in industrial applications
 - Implementation of 802.15.13 scheduled MAC, 1-2 PHY modes
 - COTS signal processing unit plus HHI optical frontends
 - Goal is D-MIMO in real-time \rightarrow validation of IEEE 802.15.13

HILIGHT Realtime prototype Realtime demonstration of 802.15.13 standard

- PM-PHY is implemented, HB-PHY is ongoing
- D-MIMO Architecture
 - Central unit, Ethernet fronthaul, distributed units, mobile units are mostly implemented
- Video from first HILIGHT demo is available on Youtube

https://www.youtube.com/watch?v=NEWqi QHUV8

6G in Buildings Future IoT creates essential new needs

- 80-90% of traffic demand is indoors, increasingly wireless
- Future IoT (imaging sensors in Cameras, LIDARs, RADARs) will increase demand
- Growing numbers of such devices will connect wireless
- Cable-like quality of service: ultra-reliable, low latency, higher data rates
- New concepts for indoor connectivity are needed in 6G era

What is the role of LiFi and Wi-Fi in 6G to serve these needs?

State-of-the-art

Future IoT creates essential new needs

- buidlings are mostly connected by copper
 - DSL or cable, some already use fibre
- also inside in homes, traffic is distributed via copper
 - Ethernet, powerline communications (PLC)
- each home has independent Wi-Fi router
 - Wi-Fi 5...6 is used to connect devices wireless, uplink is DSL
 - few 100 Mbit/s peak rate, 100 m² home \rightarrow few Mbit/s/m² area capacity
- LiFi is an emerging technology, not yet really introduced
 - 1 Gbit/s, 3-5 m² per optical frontend → few 100 Mbit/s/m² area capacity
- Major issue related to LiFi is cost

Technoeconomics of small cells Densification of the network through LiFi

- Model of small cell deployment in a manufacturing hall
- Various cablings were investigated
- Use existing methodology from fixed access networks
- Compute total cost of ownership (CAPEX+OPEX)

M. Kaufmann et al, "Techno-economics of LiFi in IoT Applications", ONDM Workshop May 2022

Main result

TCO increases, but TCO-per-Mbit/s reduces, if cells get smaller

- Wi-Fi is cheaper if we want to cover large areas
- LiFi pays out if we want to upgrade capacity in dense areas

M. Kaufmann et al, "Techno-economics of LiFi in IoT Applications", ONDM Workshop May 2022

6G inside buildings

Heterogeneous system concept

• FTTH to the buidling

- Connect building to the 6G core via central office
- Wi-Fi 8 to cover the whole building wireless
 - interference coordination in the central office
- FTTR to each room
 - Mesh WLAN nodes
 - LiFi cells
 - via diverse media (Ethernet, PLC, FTTR)

Summary The role of LiFi for 6G in buildings

- LiFi has become increasingly mature in recent years
- Optical frontend technology is mastered by multiple vendors
 - Further potential through VCSEL arrays
- New PHY and MAC layer technologies were introduced
 - DC-OFDM, OOK-FDE, distributed MIMO, integrated positioning
 - First standards are developed, accordingly
- Various applications in different markets have been tested
- Techno-economics: Small cells pay out for higher capacity in dense areas
 - Use optical technologies to move 6G further into the home: FTTR, LiFi
- Challenge is higher performance at very low cost

Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

WE PUT SCIENCE INTO ACTION.

Contact:

Prof. Dr. Volker Jungnickel volker.jungnickel@hhi.fraunhofer.de +49 30 31002 768

Einsteinufer 37 10587 Berlin Germany

